

NSN LTEソリューション ご紹介

28th March, 2011 Hiroshi Kojima Nokia Siemens Networks

1 © Nokia Siemens Networks

Content

LTE Drivers & Trends

Standardization & Industry forums

LTE/SAE Technology Overview

Solution & Products

Operator Business Case

LTE-Advanced

Summary & Next Steps

Trends & Drivers

Our market vision 2015 – The World connected

Challenges and Opportunities

The recipe for Gbytes

Global mobile traffic (P Byte/month)

Global Traffic growth: 30x fixed broadband 300x mobile data

Growth in traffic is not matched by a corresponding growth in ARPU!

Why move to LTE?

Mobile Broadband market today HSDPA delivers traffic growth – and Revenues !

Traffic increase requires low cost/bit technologies

Technology considerations: 3GPP ecosystem is mainstream

Key benefits for operators and end-user

Investment Protection

Re-use of

- Sites and infrastructure
- Backhauling
- Frequency bands

User experience → ARPU

Standardization & Industry forums

- NGMN Ltd.
- LTE/SAE Trial Initiative
- 3GPP

LTE-Standardization in 3GPP:

Further releases in preparation

- 3GPP Rel 8 was only the initial LTE release
- Further releases follow:
 - Rel 9: work in progress (additional features)
 - Rel 10 (LTE-A): work started (enhanced performance, IMT-2000 compliant)

Basic Concepts / Architecture

LTE / SAE introduces the mechanism to fulfill the requirements of a next generation mobile network

Key architectural concept.

Flat and cost effective Mobile Network

Improved flexible radio technology

- New air I/F providing higher data throughputs
- LTE provides flexibility for spectrum re-farming and new spectrum
- LTE can operate in a number of different frequency bands

Simpler architecture for reduced OPEX

- Simplified, flat network architecture based on IP reduces operators' cost per bit significantly
- Interworking with legacy systems is an integral part of service continuity
- Re-use of existing equipment as much as possible

Performance Overview

Performance: Overview of 3GPP Evolution

3GPP Rel. 6	3GPP Rel. 7		3GPP Rel. 8	3GPP Rel. 9
HSDPA/HSUPA	HSPA Evo (step1)	HSPA Evo (step2)		
	I-HSPA (Nokia Siemens	Networks system concept)	UL:16 QAM	UL:16 QAM (Rel8)
 High speed DL/UL 16 QAM HARQ 10/2 ms TTI 	 Direct Tunnel 64 QAM (exor) MIMO Flat architecture Handover support Higher # of RNC ID 	•64 QAM+MIMO or •DC + 64 QAM	 OFDM based SC-FDMA in UL Dynamic LA Flat architecture IP backhauling 	 SON enhancements Emergency Call Positioning support Home eNB (Femto) MBMS (tbd)
	Pea	ak data rates (Mbps)	1) DL: 173	DL: 326 UL: 84
DL: 14.4	DL: 28	UL: 11.5	UL: 58	
UL: 5.7	Avera	nge capacity (Mbps/co DL: 4 * 6.5	ell) ² DL: 36 UL: 18	DL: 61 UL: 24
DL: 4 * 2.5 UL: 4 * 1.5	DL: 4 * 6.5 UL: 4 * 2	UL: 4 * 2	ms)	10-20
	25-35	25-35 25	10-20	
40-60	1) Ur 2) HS ac	ncoded (CR=1) gross bit rate at air SPA capacity values normalized to cording to Nokia and Nokia Sieme raluation report V1.3 (macro cell, fu	I/F 4 carriers (2 * 20MHz in total), LT ens Network simulations for NGMN ull buffer, 500m ISD, pedestrian sp	TE capacity Networks Networks

Comparison of Throughput and Latency LTE shows excellent performance

LTE UE Classes

- All classes support 20 MHz, 64QAM downlink and receive antenna diversity
- All known LTE device chipsets support at least class 3 (also in the first phase with bit rates up to 100 Mbps)

	Class 1	Class 2	Class 3	Class 4	Class 5
Peak rate DL/UL	10/5 Mbps	50/25 Mbps	100/50 Mbps	150/50 Mbps	300/75 Mbps
RF bandwidth	20 MHz	20 MHz	20 MHz	20 MHz	20 MHz
Modulation DL	64QAM	64QAM	64QAM	64QAM	64QAM
Modulation UL	16QAM	16QAM	16QAM	16QAM	64QAM
Rx diversity	Yes	Yes	Yes	Yes	Yes
MIMO DL	Optional	2x2	2x2	2x2	4x4

All LTE devices expected to support MIMO 2x2

LTE also efficient with small bandwidth

- LTE maintains high efficiency with bandwidth down to 3.0 MHz, e.g. for low frequency band refarming scenarios
- The differences between bandwidths come from frequency scheduling gain and different overheads

Spectral Efficiency Relative to 10 MHz

Spectrum Considerations

3GPP frequency bands (Source: TS 36.104)

Band	MHz	Uplinks MHz	Downlink MHz		Region
1	2x60	1920-1980	2110-2170	FDD	UMTS core
2	2x60	1850-1910	1930-1990	FDD	US PCS
3	2x75	1710-1785	1805-1880	FDD	1800
4	2x45	1710-1755	2110-2155	FDD	US AWS
5	2x25	824-849	869-894	FDD	US 850
6	2x10	830-840	875-885	FDD	Japan 800 (currently n/a)
7	2x70	2500-2570	2620-2690	FDD	2600
8	2x35	880-915	925-960	FDD	GSM 900
9	2x35	1749-1784	1844-1879	FDD	Japan 1700
10	2x60	1710-1770	2110-2170	FDD	Extended AWS
11	2x25	1427-1452	1475-1500	FDD	Japan 1500
12	2x18	698-716	728-746	FDD	US 700 MHz Lower (Band A,B,C)
13	2x10	777-787	746-756	FDD	US 700 MHz Upper (Band C)
14	2x10	788-798	758-768	FDD	US 700 MHz Upper (Band D+)
17	2x12	704-716	734-746	FDD	US 700 MHz Lower (Band B, C)
18	2x15	815-830	860-875	FDD	New
19	2x15	830-845	875-890	FDD	New
20	2x30	832-862	791-821	FDD	New
21	2x15	1448-1463	1496-1511	FDD	New
33	1x20	1900-1920	1900-1920	TDD	UMTS core TDD
34	1x15	2010-2025	2010-2025	TDD	UMTS core TDD
35	1x60	1850-1910	1850-1910	TDD	US (TDD alternative to FDD)
36	1x60	1930-1990	1930-1990	TDD	US (TDD alternative to FDD)
37	1x20	1910-1930	1910-1930	TDD	US
38	1x50	2570-2620	2570-2620	TDD	2600 TDD part
39	1x40	1880-1920	1880-1920	TDD	China UMTS TDD
40	1x100	2300-2400	2300-2400	TDD	China TDD

New spectrums in WSE - 2010/2011

UK

Frequency	Year
790-862 MHz	2010
2.6 GHz* (14paired/ 1 unpaired)	2010

Belgium

Frequency	Year
2.1 GHz (4th 3G mobile	operator) Sept.2010
2.6 GHz*(5 paired / 1 un	paired) Sept/Oct.2010

France

Frequency	Year
2.1 GHz	May 2010
2.6 GHz* (14paired/10	unpaired) late 2010

Portugal

Frequency	Year
800MHz/2.6GHz (auction)	late 2010

Spain

Frequency 800 MHz./ 2.6 GHz (auction)	Year 2010	
Switzerland		

3	w	IτZ	er	a	na	

Frequency	Year
800/900 MHz./1.8/2.1/2	2.6 GHz
(re-auction)	Q1 2011

Ireland

Frequency	Year
470-862 MHz/2.3/2.4 GHz	open

Netherlands

Frequency	Year
2.01 GHz (1 unpaired)	Apr. 2010
2.6 GHz (13 paired/10 unpaired)	Apr. 2010
900/1800 MHz	2012

Frequency	Year
800 MHz (6 paired)	Apr. 2010
1.8 GHz (5 paired)	Apr. 2010
2.0 GHz (4 paired/ 2 unpaired)	Apr. 2010
2.6 GHz (14paired/10 unpaired)	Apr. 2010

Status 27.04.2010

l'Olariu				
Frequency	Year			
800/2300 MHz	late 2010			
2.6GHz	open			

Austria

Doland

Frequency	Year
2.6 GHz (14paired/10	unpaired) Sept. 2010

Romania

Frequency	Year
3G UMTS	2010
2.5 GHz	2011

Czech Republic

Frequency	Year
1800 MHz	late 2010
2/3 x 2.6 GHz	(WIMAX or LTE) mid2010

Greece

Frequency	Year
2.6 GHz	2010
Italy	
Frequency	Year
900 MHz (refarming)	2010
2.6 GHz* (14paired/9 unpaired)	2010

* Under discussion

Source: WCIS; Analysis Mason; regulatories; CO NWS WSE GSM & MBB Sales Team; NSN MCA WSE SM & MS © Nokia Siemens Networks

Evolution Path to LTE

Opens up future service perspectives for new entrants and CDMA operators

Benefit from our complete LTE/SAE solution for each migration path

NSN provides a complete LTE solution

Start today preparing for tomorrow!

Nokia Siemens Networks TD-LTE Evolution path for mobile broadband in unpaired spectrum

Different FDD & TDD bands defined by 3GPP

Band	MHz	Uplinks MHz	Downlink MHz		Region
1	2x60	1920-1980	2110-2170	FDD	UMTS core
2	2x60	1850-1910	1930-1990	FDD	US PCS
3	2x75	1710-1785	1805-1880	FDD	1800
4	2x45	1710-1755	2110-2155	FDD	US AWS
5	2x25	824-849	869-894	FDD	US 850
6	2x10	830-840	875-885	FDD	Japan 800 (currently n/a)
7	2x70	2500-2570	2620-2690	FDD	2600
8	2x35	880-915	925-960	FDD	GSM 900
9	2x35	1749-1784	1844-1879	FDD	Japan 1700
10	2x60	1710-1770	2110-2170	FDD	Extended AWS
11	2x25	1427-1452	1475-1500	FDD	Japan 1500
12	2x18	698-716	728-746	FDD	US 700 MHz Lower (Band A,B,C)
13	2x10	777-787	746-756	FDD	US 700 MHz Upper (Band C)
14	2x10	788-798	758-768	FDD	US 700 MHz Upper (Band D+)
17	2x12	704-716	734-746	FDD	US 700 MHz Lower (Band B, C)
18	2x15	815-830	860-875	FDD	New
19	2x15	830-845	875-890	FDD	New
20	2x30	832-862	791-821	FDD	New
21	2x15	1448-1463	1496-1511	FDD	New
33	1x20	1900-192 0	1900-1920	TDD	UMTS core TDD
34	1x15	2010-2025	2010-2025	TDD	UMTS core TDD
35	1x60	1850-1910	1850-1910	TDD	US (TDD alternative to FDD)
36	1x60	1930-1990	1930-1990	TDD	US (TDD alternative to FDD)
37	1x20	1910-1930	1910-1930	TDD	US
38	1x50	2570-2620	2570-2620	TDD	2600 TDD part
39	1x40	1880-1920	1880-1920	TDD	China UMTS TDD
40	1x100	2300-2400	2300-2400	TDD	China TDD

Status: 3GPP R9, Dec. 2009

19 FDD

Additional 2600 MHz band proposed by Clearwire expected to be included in 3GPP Rel.10 (March 2011)

8 TDD

Nokia Siemens Networks is commited to all TDD & FDD frequency bands

Nokia Siemens Networks

Radio Products and Upgrade Solutions

Flexi Multiradio Base Station

70% less HW, 25% less site costs, 55% energy savings*

- Easy to install, small, modular, weatherproof
- **SW-defined**: 1+1+1 LTE@ 20MHz,
 - 4+4+4 WCDMA, 6+6+6 GSM
- Any combination of the 3 technologies concurrently; Plug-and-Play with SON
- ⇒ High output power: 3 x 60 W RF
- Leading energy efficiency

*compared to other vendors under same conditions

Flexibility in every dimension

Flexi BTS – deploy anywhere, everywhere

Technology Award + Green Network Award

Flexi Multiradio BTS The winning base station for true Single RAN

Winner: Best Technology Advance 2009

- Software Defined Radio (same modules for all technologies)
- Smallest & most compact BTS
- Highest energy-efficiency → lowest power consumption
- weatherproof outdoor & indoor
- All-IP all integrated

Winner 2009: Green Network Hardware and Infrastructure

Flexi Multiradio BTS Site

Flexi Multiradio BTS with MIMO (High Capacity Site)

- One System Module
- Two 3-sector RF Modules for 3 sectors
- 3 cells/sectors à 120W with 2x2 MIMO and 20MHz bandwidth
- RF Redundancy (implicitly)
- Optional 4 way UL diversity
- Optional TMA/MHAs

Example: 3-sectorized site evolution

Zero footprint migration to LTE, 2.1GHz refarming with LTE later

Example: 3-sectorized site evolution Fast LTE roll-out in 2.1 GHz by SW upgrade, 2.6 GHz later

Example: 3-sectorized site evolution LTE capacity rollout – higher bandwidth and MIMO

• 2x2 MIMO

Evolution shows an example of a conservative LTE capacity rollout. Nevertheless, the complete described feature set is available in NSN's first LTE product release.

Example: 3-sectorized site evolution

GSM modernization and 900 MHz refarming, new LTE band later

*) Concurrent operation in RF provided

Why do you need Single RAN?

Current model

- High Costs
- Difficult to manage
- Hard to
 maintain
- Complexity increasing over time

Single RAN makes it simpler

Network cost optimization increases profit

All 3GPP Technologies

One efficient, simple and adaptive network.

Summary - LTE & Radio Products

Flat & most cost efficient technology

- Cutting-edge performance
- Investment protection, re-farming
- Cellular broadband evolution path

Best Technology Advance Winner 2009

Best-in-class eNB: Flexi Multiradio

- Up to 120W / sector
- Lowest power consumption, Green BTS
- Ethernet transport
- HW since Q3/08, SW load only
- Concurrent mode GSM-HSPA-LTE, Flexible capacity split, spectrum usage
- Deployability .. fits everywhere

Core Network Products and Solutions

...to build an efficient network.

You need the right solution ...

...with the best products ...

Heavy Reading (11/2009) on Evolved Packet Core

*) per rack = 3 shelves

Early commercial phase: Inter-working between LTE and 2G/3G – with pre-R8 SGSN

- Service continuity is required when the subscriber moves out from LTE coverage
 - 2G/3G/LTE Multimode UEs allow handovers between LTE and 2G/3G accesses
 - S/P-GW acts as an anchor point also when the subscriber is in 2G/3G radio coverage
 - 2G/3G SGSN has to be connected to EPC
- Pre-R8 SGSN can be connected to P-GW via Gn interface
 - Enables handovers between 2G/3G network and LTE
 - With Rel-7 Direct Tunnel the user plane traffic goes directly from UTRAN to P-GW
 - Existing GGSN can be used for pure 2G/3G terminals and traffic
 - For Inter-System Handover the SGSN selects P-GW to serve the session

Combined 2G/3G SGSN and MME for all 3GPP

accesses

- 2G/3G SGSN and MME can be combined into a single network element
 - Possible solution where operator wants to upgrade existing SGSNs to new hardware or to deploy minimum number of network elements
 - Easier 2G/3G to LTE subscriber migration
 - Reduced inter SGSN-MME signaling
- Common core: S/P-GW serves all 3GPP accesses
 - S-GW and P-GW in a single element to minimize OPEX and CAPEX costs
- 2 possible implementation options exist:
- MME functionality as overlay solution on a new, flat architecture optimized network element
 - 2G and 3G subscribers are migrated to this element
- MME functionality as SW upgrade to the existing SGSN
 - e.g. when operator has free capacity on existing SGSN's

Enhanced Packet Core: MME and LTE Gateways

Flexi Network Server (Flexi NS) as MME

- Dedicated control plane element for optimized handling of signaling traffic
- High transaction capability and eNB connectivity, up to 2(10) M subscr., 10(50) ktr/s, 40(120) k eNB (values in () with 3 shelf configuration)
- High performance ATCA industry platform

Combi SGSN upgraded to SGSN/MME

- DX200 HW designed for complex interface environment, adapts well to different interface variants (FR, ATM, E1/T1, IP)
- Field proven 2G/3G SGSN with large installed base
- MME can be added as SW upgrade to current SGSNs.

Flexi Network Gateway as Serving GW and PDN GW

- Highest throughput and packet processing capacity (up to 480 Gbit/s)
- High signaling and connectivity capability
- Flexibility to introduce intelligence in mobile IP edge
- High performance ATCA industry platform

Voice evolution in LTE/SAE

Drivers for Voice over LTE (VoLTE)

- LTE is driven by mobile data growth
- Voice service is mandatory and desirable with increased voice efficiency with LTE
- LTE is full-IP thus voice must be handled over IP
- Although Internet players may enter LTE networks, operators have unique proposition to offer:
 - Same end-user experience and QoS regardless of used access
 - Voice service continuity between different accesses
- Over time Voice over LTE will grow to become the mainstream mobile voice technology

15 x more users per MHz with LTE than with GSM EFR!

The One Voice initiative

One Voice is an initiative to utilize current open standards to define the mandatory set of functionalities for the UE, the LTE Access Network, the Evolved Packet Core Network, and the IP Multimedia Subsystem in order to define a technical profile for LTE voice and SMS services.

The transition to VoLTE technology is smooth with fast-track VoLTE

Voice and SMS implementation options in LTE

	Fast-track	CS fallback	IMS based VoLTE	VoLGA
VoIP support	Yes	No	Yes	Yes
New hardware requirements	None to minimum	None to minimum	IMS and VoIP server	All new functions implemented with additional hardware
Standardization	According to 3GPP Rel-8	According to 3GPP Rel-8	According to 3GPP Rel-8	Not standardized by 3GPP
Terminals	According to 3GPP Rel-8	According to 3GPP Rel-8	According to 3GPP Rel-8	Not standardized by 3GPP
SMS support	Yes, via LTE or over IP	Yes, via LTE	Yes, over IP	Yes, SMS over IP tunnel. Not standardized by 3GPP
Reutilization in IMS target architecture	Full	Optional	N/A	Cannot be reused in the target architecture

LTE voice evolution

59 © Nokia Siemens Networks

Common voice control solution provides smooth evolution to voice over LTE

Our VoLTE solution supports One Voice

- Nokia Siemens Networks VoLTE solution is One Voice compliant and are already based on SIP technology
- Both approaches: IMS and Fast-track are designed to support One Voice

Open multi-application platform strategy

Transport

Transport

Assumptions:

Ethernet interfaces at eNB (data rates >= 100 Mbps) Symmetrical links at the moment (only DL is considered) IPsec assumed to protect U-plane data

NSN Mobile Backhaul End-2-End Solutions

IEEE1588-2008 deployment options CET ensures hard QoS for timing packets

Best-of-breed platforms for building complete backhaul networks

LTE / SAE Operability

NetACT : Overall Network Management Solution

- One management system for all technologies
 - LTE
 - GSM / EDGE BSS
 - WCDMA RAN
 - circuit-switched & packet core
- Multivendor network integration
- Network and Service Assurance, Network Planning and Configuration, Administration, etc

Management Solution for LTE

Nokia Siemens Networks NetAct

Automation

- Sophisticated and field tested applications for LTE management
- Self-optimisation, Self-configuration and Self-healing solutions
- Even better visibility to network quality and end user behavior

Costs under control

- OPEX drops:
- Efficient and automated network operations
- Less people needed for network planning and operations
- Optimizing network capacity utilization
- Revenue increases: Higher service availability/quality

Natural evolution

- LTE is natural technology step for NetAct customers
- Today, over 200 NetAct customers
- 10 000 NetAct users online all the time
- Over 600 million subscribers are served by NetAct

One management system

- Multi-technology and multi-vendor support by integrated OSS system
- Complete set of O&M applications for element, network and service management
- Flat O&M architecture

SON Suite elements for 2G, 3G and LTE

Self Organizing Networks simplify through automation

Self-Healing

- Automated preventive correction
- Minimized revenue loss

Self-Optimization

- Optimal use of capacity
- Maximized revenue flow

Self-Configuration

- Automated BTS/eNB deployme
- Faster roll-out

Key operational benefits in Configuration, Optimization and Healing

Wide Experience and Engagement in SON

Multi-level Architecture: SON Suite

Most comprehensive offering in Automatic Neighbor Relation (ANR)

SON Suite facts and figures

- Over 50% reduction of mobile networks optimization OPEX
- On average 14% reduction of drop call rate
- BTS integration to network in few minutes
- Network optimization cycle time reduced from 3 months to 7 days
- Over 50% manual work reduction in improving Key Performance Indicators
- Up to 50% cut of handover failures by parameter value correction and maintenance
- Over 50% of cell overload eliminated with SON load balancing

NSN SON does not require any new hardware.

Environmental Considerations Power consumption & efficiency

Save energy. Save money. Good green business sense.

How to decrease Radio Network energy consumption and CO2 emissions?

Reduce energy consumption per site

- Use more energy efficient BTS
- Reduce site power consumption
 - Increase site temperature
 - Use Outdoor BTS
- Optimize energy consumption versus traffic

Reduce the number of BTS sites

- Increase cell coverage
- Share networks

79

Use renewable energy sources

- Solar cells, wind and hybrid solutions on site
- Green energy: hydro, wind and bio generated grid electricity

ITS traffic

- currer

Why Nokia Siemens Networks? Industrial leader in WCDMA BTS Site power consumption

From operator point of view only the *Complete BTS Site* power consumption is relevant

= the REAL resulting OPEX cost

Flexi BTS power consumption includes all required BTS site elements:

RF and baseband
Outdoor capability as such
Integrated transmission

Flexi BTS enables the lowest BTS site power consumption

WCDMA/HSPA BTS site power reduction

Example of average power consumption of 1+1+1 WCDMA/HSPA BTS Site @ 20W

Based on typical base station site configuration & typical traffic load

Nokia Siemens Networks Flexi BTS world leading energy efficiency

- A new level of BTS energy efficiency is set with new 3 Sector RF Module
- 3-sector Flexi Multiradio BTS in typical WCDMA or LTE operation will now consume only 440W

Summary Products & Solutions

Nokia Siemens Networks' LTE solution (1)

Nokia Siemens Networks' LTE solution (2)

